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Abstract 

 
Autonomous vehicles use onboard sensors to sense the surrounding environment. In complex 
autonomous driving scenarios, the detection and recognition capabilities are constrained, 
which may result in serious accidents. An efficient way to enhance the detection and 
recognition capabilities is establishing collaborations with the neighbor vehicles. However, 
the collaborations introduce additional challenges in terms of the data heterogeneity, 
communication cost, and data privacy. In this paper, a novel personalized federated learning 
framework is proposed for addressing the challenges and enabling efficient collaborations in 
autonomous driving environment. For obtaining a global model, vehicles perform local 
training and transmit logits to a central unit instead of the entire model, and thus the 
communication cost is minimized, and the data privacy is protected. Then, the inference 
similarity is derived for capturing the characteristics of data heterogeneity. The vehicles are 
divided into clusters based on the inference similarity and a weighted aggregation is performed 
within a cluster. Finally, the vehicles download the corresponding aggregated global model 
and train a personalized model which is personalized for the cluster that has similar data 
distribution, so that accuracy is not affected by heterogeneous data. Experimental results 
demonstrate significant advantages of our proposed method in improving the efficiency of 
collaborative perception and reducing communication cost. 
 
 
Keywords: Autonomous Vehicles, Clustering, Collaborative Perception, Personalized 
Federated Learning 
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 1. Introduction  

With the rapid advancements of Information and Communications Technology (ICT), in 
terms of sensor technology, wireless communications, Artificial Intelligence (AI), and 
computing resources, smart vehicles can gather data from their surrounding environment [1]. 
These vehicles can engage in local learning processes and leverage cloud or edge cloud 
assistants to perform learning tasks. As a result, a multitude of smart applications become 
possible, including autonomous driving, advanced driver assistance, intelligent navigation, etc. 

In the application of autonomous driving, vehicles fuse and process the data obtained from 
onboard sensors [2], i.e., RGB cameras, ultrasonic radar, lidar, and millimeter wave radar, to 
generate a comprehensive understanding of the surrounding environment. By utilizing 
machine learning algorithms, vehicles can compare sensor data with previously acquired 
knowledge, allowing them to make safe and intelligent driving decisions.  

However, insufficient availability of local computing resources and limited sensor data 
pose a significant obstacle to real-time data learning and surrounding perception in 
autonomous driving. A promising solution lies in collaboration with other vehicles and edge 
clouds which can enhance the sensing capabilities of connected vehicles and guarantee real-
time data learning [3].  

To facilitate effective collaboration, it is crucial to adopt inter-vehicle communication and 
information-sharing strategies. Sharing information involves the exchange of surrounding 
perception data between interconnected vehicles and edge clouds through the Internet of 
Vehicles (IoV). The data exchanges aim to enhance the perception and data learning 
capabilities of autonomous vehicles, consequently leading to improved driving safety [4]. 
However, this endeavor gives rise to an additional safety concern wherein data becomes 
vulnerable to interception during wireless transmission or acquisition by neighboring vehicles 
acting with malicious intent. Such private data comprises a multitude of sensitive vehicle 
information, encompassing surrounding perception data, driving control data, driving routes, 
GPS coordinates, driving preferences, etc. These data elements hold significant importance in 
ensuring the overall safety of the driving experience.  

Given the above concerns, Federated Learning (FL) emerges as a promising learning 
framework for autonomous driving. FL employs a distributed learning manner where vehicles 
train their local models using their own data and subsequently update the parameters of these 
local models to an edge cloud for the purpose of training a global model. Acting as a central 
server, the edge cloud then multicasts the global model to neighboring vehicles, effectively 
safeguarding data privacy while simultaneously reducing communication overhead. 

However, the traditional FL method assumed i.i.d. (independent and identically distributed) 
data [5] which is not a common case in autonomous driving due to the data heterogeneity, and 
it may result in a global model trained by the i.i.d. data being efficient for specific driving 
cases and unable to handle complex driving scenarios. 

In this paper, considering the issue of data being maliciously obtained and the limitation of 
the i.i.d. data in IoV, a personalized federated learning framework based on inference 
similarity is proposed. A clustering method is proposed that the vehicles are clustered with 
similarity of data, and then train the model for each cluster without accessing the private data. 
This eliminates the risk of data being maliciously intercepted and obtained during transmission 
and reduces the impact of data heterogeneity on perception effects. The number of clusters 
does not need to be set in advance, which means that the algorithm can better adjust according 
to the actual distribution of data. Additionally, logits are transmitted instead of model 
parameters between clusters and RoadSide Units (RSUs) to reduce communication cost. The 
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contributions of our research are summarized as follows: 
 In order to solve the issue of accuracy degradation caused by data heterogeneity in 

autonomous driving scenarios, a clustering method based on inference similarity is 
proposed in the framework of federated learning which enables vehicles to learn 
personalized knowledge in a cluster.  

 Some nodes are selected in each round of training. Logits are transmitted instead of model 
parameters for each round to participate in clustering and updating the local model with 
logits, further reducing communication cost between vehicles and RSUs, and enhancing 
the security of data transmission. 

 Extensive experiments are conducted on a real-world traffic sign dataset. The simulation 
results show that the proposed method outperforms state-of-the-art algorithms in terms of 
perception efficiency and communication cost.  
The rest of this paper is organized as follows. The related work on autonomous driving 

perception, and clustering-based federated learning are reviewed in Section 2. Then, we 
introduce the analytical model for data distribution and the formation mechanism of clusters 
in Section 3. The specific process of our proposed clustering-based federated learning method 
is provided in Section 4. Our proposed method is evaluated through simulation experiments in 
Section 5. Finally, we conclude our work with remarks in Section 6. 

2. Related Work 

2.1 Local Perception 
Autonomous vehicles require real-time environmental information collection and processing 
during the driving process. The main tasks include lane and road detection, traffic sign 
recognition, vehicle tracking, behavior analysis, prediction, and scene understanding [6]. 
Many studies have been devoted to developing robust and efficient environment perception 
methods. For example, perception methods based on lidar generated detailed 3D point clouds, 
capturing the geometric and depth information of surrounding objects [7]. Vision-based 
perception methods utilize cameras and image processing techniques to extract valuable 
information from visual data [8], e.g., lane markings, traffic signs, and traffic signals. In 
addition, recurrent neural networks and long short-term memory networks [9] help model the 
temporal dependencies in dynamic traffic scenes, enabling better prediction and decision-
making. However, there are still some challenges, such as handling occlusions, adverse 
weather conditions, and real-time processing. Further research and development are needed to 
achieve fully autonomous and safe driving systems.  

2.2 Collaborative Perception 
Collaborative perception leverages wireless communication technology to interactively 
integrate environmental information obtained from distributed vehicles with local perception 
information. Through cooperation, the perception accuracy of vehicles is improved, and 
perception blind spots are eliminated. Than. et al. [10] investigated the information that should 
be included in collaborative perception to enhance the perceptual reliability of cars. Gabb. et 
al. [11] proposed a hybrid vehicle perception system that combines local onboard sensor data 
with received global sensor data. Chen et al. [12] conducted research on the collaborative 
perception of raw data to enhance the detection capability of autonomous driving systems. 
This approach integrates sensor data from vehicles in IoV at different locations and directions. 
Arnold et al. [13] proposed two novel collaborative 3D object detection schemes named post-
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fusion and pre-fusion, depending on whether the fusion occurs after or before the object 
detection stage. However, these methods did not consider data privacy and security, as well as 
the problem of increased data transmission latency due to limited communication resources. 

2.3 Clustering Based FL 
Federated learning (FL) is a decentralized learning technique where training data is distributed 
between work nodes, rather than sending raw data to the server for centralized training. To 
address the issue of heterogeneous data affecting the efficiency of collaborative perception, 
researchers have proposed several personalized federated learning methods [14]. These 
methods aim to train one or more different models corresponding to the feature of client 
perception data [15], such as assigning global data by categories [16] and introducing meta-
learning to capture fine-grained information [17]. 

In contrast, personalized federated learning based on clustering considers cost issues by 
aggregating clients with similar data distributions into a cluster. As is shown in Fig. 1, nodes 
within each cluster can share knowledge. Each cluster trains different models to adapt to other 
clients, thereby improving perception efficiency independently. Clustering methods [18] can 
be categorized as one-shot clustering and iterative clustering. Based on the underlying 
assumptions about the cluster structure, it can also be divided into inter-cluster knowledge 
sharing and non-sharing. Ghosh et al. [19] studied one-shot clustering and non-sharing 
methods, where the number of clusters is initially specified. It is similar to K-means clustering. 
However, comparing the Euclidean or cosine distances between neural networks to determine 
model similarity does not yield satisfactory results. Sattler et al. [20] proposed that the number 
of clustering groups can change during iterations without pre-specifying the number of clusters. 
Ghosh et al. [21] suggested that the server sends N models to clients during each round-trip 
communication. Then clients use their local data to train these models and select the most 
suitable one. However, this method increases the payload of the downlink N times. 

 

 
Fig. 1. Clustering Federated Learning 

To overcome the above problems, this paper proposes a novel adaptive clustering-based 
FL method that does not require the prior determination of the number of clusters. It is 
consistent with the uncertainty of the number of vehicles and the constantly changing traffic 
conditions in autonomous driving scenarios. The vehicle clustering method that does not 
require setting the number of clusters in advance has better adaptability and universality, and 
can better adapt to different types and distributions of data, thereby better discovering similar 
structures in the data and making corresponding adjustments. All onboard clients are assigned 
to the most relevant clusters. Nodes within each cluster share a set of averaged parameters. 
The algorithm reassigns nodes to clusters in each iteration by minimizing the loss function. 
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3. Problem Definition 
This paper considers a road scene composed of multiple vehicles and RSUs, each autonomous 
vehicle utilizes the sensing data to understand the surrounding environment, such as lane 
detection, traffic signs, cars, cyclists, and pedestrians. In the communication range, it is 
assumed that some vehicles are located in the blind spot of other vehicles. Obstacles or severe 
weather conditions may obstruct their sensors and cause difficulty in recognizing images 
captured by cameras. Under the coordination of the RSUs, multiple vehicles collaborate to 
train a global model. By learning from the global model sent by the RSU, they enhance their 
perception efficiency and improve their ability to understand the surrounding environment and 
recognize traffic signs. The proposed clustering-based FL framework is illustrated in Fig. 2. 

 
Fig. 2. Collaborative Perception of Vehicles through RSU 

3.1 Data Distribution 
Given the complexity of autonomous driving scenarios, this paper aims to use a federated 
learning framework to collaborate and train personalized learning models in traffic sign 
recognition for vehicle clients with different perceived data distributions. Assuming there are 
K vehicles, each vehicle can only access its private dataset Dk. Each data sample ξ is 

represented by (x, y), where 𝑥𝑥∈ℝ𝑑𝑑 denotes the input data, and y∈[1, N] represents the 
corresponding label. Dk ={D1, …, Dk} denotes the collection of datasets of all vehicles. This 
paper assumes that these datasets follow various non-IID distributions. 
 Feature distribution skew: The marginal distribution of Pi(x) varies among different clients, 

while the conditional distribution of P(y|x) is the same. In other words, the marginal 
distributions of data samples in Di and Dj are different. For example, different countries 
may have different representations for the same traffic sign features in a dataset of vehicle 
identification. 

 Label distribution skew: The marginal distribution of Pi(y) varies among different clients, 
while the conditional distribution of P(x|y) is the same. In other words, the marginal 
distributions of labels in Di and Dj are different. 

 Same label, different features: The conditional distribution of P(x|y) varies among various 



1228                                                                              Jin et al.: An Inference Similarity-based Federated Learning Framework for  
Enhancing Collaborative Perception in Autonomous Driving  

clients, and the marginal distribution of Pi(y) is the same. In other words, different clients 
may have different feature representations for the same label. 

 Same features, different label: The conditional distribution of P(x|y) varies among different 
clients, and the marginal distribution of Pi(x) is the same. In other words, various labels 
may be assigned to the exact feature representations in different client data. 
V2V data exhibits highly non-IID characteristics. For instance, in a given scenario, 

different vehicles may capture slightly different features in the same perceptual data due to 
varying viewpoints. Therefore, the data labels obtained may be different. When data is 
distributed in a highly non-IID manner, more than one model is required to meet the 
requirements of all vehicles. Therefore, it becomes necessary to establish multiple models 
tailored to vehicle clusters with similar data distributions. 

3.2 Clustering Model 
The vehicles are managed in clusters based on the inference similarity which is utilized to 
identify vehicles with similar data distributions without prior knowledge about the data 
distribution and the number of clusters is not known in advance. An adjacency matrix is taken 
as input and group similar vehicles are into clusters. Based on the specific features of the model 
trained from different user data, RSU constructs the adjacency matrix Ai, j, i, j=1, …, |St|, i and 
j are from set {1, 2, …, |St|}, using the computation results from each vehicle. This step 
facilitates the creation of subsets of similar data within each cluster. We define a hard 
thresholding operator Γ which is applied on A�i,j=Γ(Ai,j)=Sign(Ai,j-β). The distance threshold 
is called the clustering threshold and is shown by β. Then, the values are grouped in each row 
of  A�i,j into the same cluster. 

4. The Proposed Scheme 
In standard federated learning, the vehicles aim to collaboratively find the parameter vector of 
the model w∈Rn that minimizes the empirical loss, mapping the input data x to the label y.  
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where the function Fk(w) represents the local objective of the user vehicle k, defined as 

 ( ) ( )1 ,
k

k D
k

F w f w
D ξ

ξ
∈

= ∑  (2) 

where f(w,ξ) is a composite loss function. 
Due to the data heterogeneity across vehicles, the optimal model parameters w*  that 

minimize F(w) can generalize poorly to vehicles whose local objective Fk(w) significantly 
differs from F(w) . Additionally, data transmission during vehicles and RSU leads to an 
increase in communication cost. A clustering method is proposed in this paper which utilizes 
the data similarity of different vehicles. This method proves that the vehicles can benefit from 
other users in a cluster with the improved generalization ability of the learning model and 
decrease the amount of data transmission to reduce communication cost. 

In the proposed clustering method, the classification model wk,k∈[K] outputs logits on a 
predefined number N of classes, representing a probability vector over the N classes. The logits 
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of the model wk on the data x from the private dataset are defined as g(wk, x), x∈D, stacked 
into rows for each x. Each vehicle seeks to find the model parameters wk that minimize the 
empirical risk ( );k kL w g , which is the sum of the empirical risk of its own local training data  
Fk(wk) and the regularization term as follows: 

 ( ) ( ) ( ) ( ) 2
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; ,

| |k k k k k k
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L w g F w g x g w x
D
λ

∈

= + −∑  (3) 

In (3), ( ) ( ),1
g ,K

k k i ii
x g w xα

=
=∑ denotes the weighted average of the logits from all 

vehicles for an arbitrary set of weights for the vehicle, i.e., {αk,i}i∈[K] and ∑ αk,i=1K
i=1 . The 

weight of the regularization term is modulated by λ. Therefore, vehicles with similar logits 
have higher weights towards each other and they are merged into a cluster. The RSU computes 
the weighted average of logits for each cluster and sends it to the corresponding vehicles. The 
client updates the model parameters with the corresponding logits, and then sends the updated 
parameters back to RSU. The overview of the proposed scheme is shown in Fig. 3. 

 

 
Fig. 3. Overview of the Proposed Scheme 

Algorithm 
Input： Number of available vehicles N, sampling rate R∈{0, 1}, clustering threshold β 

Output: [ ]{ }k k Kw ∈   

1: Initialize: ( )0,0{ }
tk k Sw ∈ , selected set of n vehicles tS  

2: For t=0,1,2 ... ,T-2, T-1 communication rounds do: 
3:     Vehicle k do: 

4:        Get ( ),0t
kg  for current local model 

5:        For r=0, ... ,τ-1 local iterations do: 
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6:          Update 
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         // RSU constructs the adjacency matrix 
12: 

          
A�i,j=Γ(Ai,j)=Sign(Ai,j-β) 

         // RSU applies hard thresholding and does clustering 
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In the first round, the RSU broadcasts initialized model parameters wk
(0,0). Each vehicle has 

its private dataset Dk, which contains multiple samples. The classification model wk,k∈[K] 
outputs logits in a predetermined number of categories N, a probability vector for N categories. 
The logits of the model wk on the input data x from the private dataset are defined as g(wk, x).  

Each vehicle trains its own data using the initial model and sends the updated model logits 
to the RSU for similarity clustering. No private information needs to be received about the 
data for inference similarity clustering. An adjacency matrix is constructed based on { }

t

t
k k Sg ∈  

obtained from the vehicle clients. 
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The symbol ⊙ represents Hadamard product. The hard thresholding operator is defined as 
Γ which is applied on Ai, j, and yields as a threshold value. The RSU groups the values of each 
row into the same cluster with similar information to form clusters 1

1 1 1{ } , 1,...,t

t t

T
j j t tC j T+

+ + = = . 
Finally, the RSU computes the weighted average of logits in the same cluster and sends them 
back to the corresponding vehicle. The vehicles use the obtained new weighted model for the 
next round of local model updates and communication. The logits for the updates within each 
cluster are defined as: 

 ( ) ( ),1
,K

k k i ii
g x g w xα

=
=∑   (5) 

In the t-th iteration, the RSU samples data from the vehicles and broadcasts the current 
parameters from the model parameters ( ),0t

kg  to the onboard client. The empirical loss over 
local data typically defines the local objective Lk. Each vehicle then estimates its cluster 
identity and obtains the corresponding training model by finding the model parameter that 
yields minimum loss on its test data, 

  ( ) ( )( )1 ,0
, ,arg min ;

t t

t ttest
k j k k jkg D gL+ =, 0  (6) 
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Afterward, the vehicles perform τ -step stochastic gradient descent update, and these 
updated parameters ( )1,0t

kg +  are then sent back to the RSU. The vehicles and RSU only 
communicate logits instead of model parameters. The formula for the local model update of 
each vehicle in each round is as follows: 

 ( ) ( ) ( ) ( )( ), 1 , , ,0
k k ;t r t r t r t

k kkw w w shη+ = − ⋅  (7) 
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The term wk
(t,r) denotes the local model parameters of the vehicle k, η is the learning rate,  

ξk
(t,r) is the mini-batch randomly sampled from the dataset of local vehicle k, and Dk represents 

the data samples of vehicle k. The number of local iterations r is fixed for each round. We use  
wk

(t+1,0) = wk
(t,τ) to represent the local model updated by vehicle k after all the local iterations 

in iteration t. The RSU reuses updated parameters to form a dynamic vehicle cluster with 
similar data and computes the average parameter for each cluster. 

5. Experiments 

5.1 Experimental Settings 

5.1.1 Datasets and Models 
This paper evaluated the performance of the proposed model on two popular datasets: MNIST 
[22] and CIFAR-10 [23]. The dataset MNIST contains 60,000 training images and 10,000 
testing images. MNIST has become a standard benchmark for evaluating the performance of 
new machine learning algorithms. The dataset CIFAR-10 consists of 60,000 32x32 color 
images in 10 classes which is divided into 50,000 training images and 10,000 testing images. 
It contains complex objects such as animals, ships, cars, and airplanes. Additionally, Belgium 
TSC [24] and GTSRB [25] datasets were used to assess the performance of environment 
perception in the context of autonomous driving. They include 62 classes of traffic signals and 
42 classes of traffic signs. Each image in the Belgium TSC dataset represents a traffic sign 
captured under various environmental conditions. The dataset is designed to support research 
on traffic sign recognition and classification tasks. The dataset GTSRB covers a wide range of 
traffic sign classes, including speed limits, no-entry signs, yield signs, and various other 
regulatory, warning, and information signs commonly found on roadways.  
A convolutional neural network was constructed as the training model. The model comprises 
two convolutional layers, two pooling layers, and three fully connected layers (with the last 
fully connected layer as the output layer). 

5.1.2 Baselines 
To demonstrate the effectiveness of our proposed method, we compared it against the 
following approaches: 1) Methods that aim to learn a single global model: FedAvg [26] and 
FedProx [27]. FedAvg can be considered a form of collaborative learning among distributed 
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devices. FedProx, on the other hand, can be seen as a generalization and refinement of FedAvg; 
2) Personalized federated learning methods: PerFedAvg [28] involves transferring and fine-
tuning the initial model parameters. And FedFomo [29] determines that which models should 
be computed by the RSU and sent to which vehicles. 

5.1.3 Training Settings 
We use SGD as the local optimizer for all methods and set the batch size to 32 with a learning 
rate of 0.001. One hundred vehicular clients are considered and ten vehicles are randomly 
selected for training each round. The purpose of this setting is to fully utilize a wider and more 
diverse range of data samples and protect privacy while selecting a subset of vehicles to reduce 
communication and computing costs. Three hundred rounds of communication training were 
conducted for each dataset, which is sufficient for the model to converge.  
 

Table 1. Parameter Settings for Simulation Experiments 

Parameter Value 

Bandwidth 5 MHz 

Vehicle Computing Power 4×106~2×107 cycles/s 

Distance between Vehicle and RSU 30~50 m 

Vehicle Transmission Power 1.3 W 

Batch Size 32 

Learning Rate 0.001 

Number of Vehicles 100 
Weight of Clients Selected for Training 
Each Round 0.1 

5.2 Results 

5.2.1 Model Performance 
In our experiments, we ran multiple times and recorded the average results. 

 
Fig. 4. Accuracy of Five Algorithms on Different Datasets 
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Table 2. For a homogeneous scenario with a total number of vehicles K=100, the average testing 
accuracy of the entire vehicle and the whole communication cost (number of parameters per round of 

communication) using the GTSRB dataset as an example. 

Algorithm 
Test Acc. 

Com.-Cost 
MNIST CIFAR-10 Belgium 

TSC GTSRB 

FedAvg 81.53±0.58 38.01±1.91 92.61±0.22 92.79±0.38 6.458E +09 

FedProx 93.47±1.85 41.72±1.05 92.77±0.15 92.84±0.24 6.458E +09 

PerFedAvg 97.75±0.23 83.31±0.89 93.12±0.16 92.41±1.53 6.458E+09 

FedFomo 97.75±0.11 86.77±0.53 92.36±0.42 91.45±0.21 1.162E+10 

Proposed 97.89±0.21 86.73±1.21 95.01±0.12 95.79±0.68 3.5E+07 
 
In Table 2, we show the performance of our proposed method along with the performance 

of comparison algorithms regarding the highest test accuracy and communicated number of 
parameters between RSU and vehicles. For the MNIST and CIFAR-10 datasets, our proposed 
algorithm achieves significantly higher accuracy than FedAvg and FedProx, and achieves 
comparable results to the personalized method PerFedAvg and FedFomo. The bar chart in Fig. 
4 clearly illustrates the comparative effects of model performance, showing that our proposed 
method achieves the highest accuracy across different datasets. 

5.2.2 Environmental Perception Performance 
The proposed algorithm achieves higher accuracy for the Belgium TSC and GTSRB datasets 
than the four comparison algorithms. Fig. 5 shows the training accuracy curves and the number 
of communication rounds for various methods on the Belgium TSC and GTSRB datasets. It 
can be observed that our proposed algorithm reaches convergence around 50 to 70 rounds. The 
four comparison algorithms show a slow increase in accuracy even after 200 rounds. They go 
convergence only after nearly 300 rounds. The personalized federated learning method, 
FedFomo, demonstrates convergence performance that is second only to our method. This 
indicates that our proposed method significantly improves perception efficiency in general 
cooperative perception tasks. 
 

S  

Fig. 5. Relationship between Testing Accuracy and Communication Rounds 
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From the Com.-Cost values in Table 2, it can be observed that PerFedAvg, FedFomo, and 
our proposed method achieve similar performance. The total number of model parameters 
communicated between the uplink and downlink is 6.458E+10 and 1.162E+10, respectively. 
Our proposed algorithm requires a communication cost of only 3.5E+07 parameters, resulting 
in a maximum saving of up to 332 times. 

Fig. 6 displays the latency generated by different vehicles during a single training round, 
comparing it with two baseline methods, FedAvg and FedFomo. The results demonstrate that 
the latency of these two baseline methods is significantly higher than the proposed method in 
this paper. Due to their inability to adapt to the constantly changing computing power of 
vehicular clients, the training latency of baseline methods exhibits a wide range of fluctuate 
ons. On the other hand, the proposed method shows a stable latency range throughout the 
training process. The latency is significantly lower than that of the two baseline methods. This 
indicates that the proposed method is better suited for autonomous driving scenarios and 
provides more efficient and reliable communication latency performance in federated learning. 

 

Fig. 6. Latency Generated by Vehicles. 

6. Conclusion 
This paper has proposed a personalized federated learning framework based on similarity 
inference clustering for enhancing collaborative perception in autonomous driving scenarios. 
The proposed scheme can achieve more accurate perception results by introducing the 
inference similarity of models and grouping vehicles with similar data. Additionally, 
transmitting a more miniature parameter instead of the entire model can reduce communication 
overhead and improve communication efficiency. We have validated the proposed algorithm 
on real-world datasets which has exhibited superior performance compared to existing 
collaborative perception methods. Therefore, this approach can effectively be applied to 
environment perception in autonomous vehicles, improving the quality and efficiency of real-
time vehicle services. 
The future work of this study mainly lies in two aspects. One is to combine the hierarchical 
idea of triplets [30] to further optimize and find higher precision solutions. Another is to 
combine federated learning and resource allocation to better fit real-world scenarios. 
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